The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota

نویسندگان

  • Henrik Krehenwinkel
  • Marisa Fong
  • Susan Kennedy
  • Edward Greg Huang
  • Suzuki Noriyuki
  • Luis Cayetano
  • Rosemary Gillespie
چکیده

PCR amplification bias is a well-known problem in metagenomic analysis of arthropod communities. In contrast, variation of DNA degradation rates is a largely neglected source of bias. Differential degradation of DNA molecules could cause underrepresentation of taxa in a community sequencing sample. Arthropods are often collected by passive sampling devices, like malaise traps. Specimens in such a trap are exposed to varying periods of suboptimal storage and possibly different rates of DNA degradation. Degradation bias could thus be a significant issue, skewing diversity estimates. Here, we estimate the effect of differential DNA degradation on the recovery of community diversity of Hawaiian arthropods and their associated microbiota. We use a simple DNA size selection protocol to test for degradation bias in mock communities, as well as passively collected samples from actual Malaise traps. We compare the effect of DNA degradation to that of varying PCR conditions, including primer choice, annealing temperature and cycle number. Our results show that DNA degradation does indeed bias community analyses. However, the effect of this bias is of minor importance compared to that induced by changes in PCR conditions. Analyses of the macro and microbiome from passively collected arthropod samples are thus well worth pursuing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mosquito vector‐associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod‐borne diseases

Vector-borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito-associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial...

متن کامل

Plant diversity accurately predicts insect diversity in two tropical landscapes.

Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (Science, 338, 2012 and 1481) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now requi...

متن کامل

The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics

Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform we...

متن کامل

Human Microbiome

Humans are almost identical in their genetic pattern, but the slight differences in our DNA lead to remarkable phenotypic variation among the human population. There are a variety of microbial communities and their genes (microbiomes) in the human body that play an essential role in human health and disease. The microbes inhabiting our bodies is quite a bit more variable, with only a third of i...

متن کامل

Effect of Site Level Environmental Variables, Spatial Autocorrelation and Sampling Intensity on Arthropod Communities in an Ancient Temperate Lowland Woodland Area

The interaction of arthropods with the environment and the management of their populations is a focus of the ecological agenda. Spatial autocorrelation and under-sampling may generate bias and, when they are ignored, it is hard to determine if results can in any way be trusted. Arthropod communities were studied during two seasons and using two methods: window and panel traps, in an area of anc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018